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Learning-Based Distortion Correction and Feature
Detection for High Precision and Robust
Camera Calibration

Yesheng Zhang ", Xu Zhao

Abstract—Camera calibration is a crucial technique which sig-
nificantly influences the performance of many robotic systems.
Robustness and high precision have always been the pursuit of di-
verse calibration methods. State-of-the-art calibration techniques,
however, still suffer from inexact corner detection, radial lens
distortion and unstable parameter estimation. Therefore, in this
paper, we improve the precision and robustness of calibration by
widening these bottlenecks. In particular, effective distortion cor-
rection is performed by a learning-based method. Then, accurate
sub-pixel feature location is achieved by the combination of robust
learning detection, exact refinement and complete post-processing.
To obtain stable parameter estimation, an image-level RANSAC-
based calibration procedure is proposed. Ultimately, we assemble
these methods into a novel and practical calibration framework.
Compared with state-of-art methods, experiment results on both
real and synthetic datasets under noise, bad lighting and distortion
manifest the better robustness and higher precision of the proposed
framework.

Index Terms—Calibration and identification, deep learning for
visual perception, visual learning.

I. INTRODUCTION

AMERA calibration is crucial for many robotic applica-
C tions [1]-[3]. Especially, in some industrial and medical
applications [4], precision and robustness of camera calibration
have significant impact on the overall performance.

The most widely-used camera calibration toolboxes [5], [6]
are built based on Zhang’s technique [7]. Usually chessboard
images are captured to calculate camera parameters according
to the established feature correspondences between 3D world
and 2D images. This pipeline is flexible and easy to implement.
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Building a precise and robust calibration system, however, is
still a challenging problem, mainly due to the following issues:
1) Inexact detection: Sub-pixel feature localization is hard
to achieve, especially in scenario with noise and bad
illumination.

2) Radial distortion: Severe radial lens distortion may result
in calibration failure.

3) Unstable estimation: Purely algebraic optimization of re-
projection error leads to sub-optimal and unstable calibra-
tion results.

For the first issue, the calibration task naturally demands
high precision feature detection, e.g. sub-pixel level accuracy.
Although the chessboard corner feature is relatively simple
for detection, the accuracy of hand-crafted detectors [8]-[10]
needs to be enhanced as various noise can easily change the
original feature pattern. As the rapid advance of deep learning,
the convolution neural network (CNN) is introduced [11]-[13]
to detect chessboard corners. Based on massive data training
and data augmentation, the CNN can learn better feature rep-
resentation of chessboard corner than manual methods. Thus,
the learning detectors [14], [15] are much more robust to noise
than hand-crafted ones. However, as the CNN is not sensitive to
feature location [16], sub-pixel corner coordinates are difficult to
be derived directly from the CNN. Therefore, recent work [17]
decouples the corner location and the learning feature by refining
the peak of CNN’s output heatmap to get sub-pixel location. We
follow this learning heatmap refinement pipeline, but propose a
novel detection method with better combination between feature
learning and sub-pixel refinement. Specifically, our network is
trained to generate standard Gaussian distribution for each cor-
ner. Thus our refinement is performed by Gaussian surface fitting
algorithm to get accurate sub-pixel location. Moreover, thanks
to the known distributions of detected corners, we tackle the
wrong detection problem in [15] by distribution-aware outlier
rejection. Considering the chessboard pattern’s peculiarity, the
collineation post-processing is applied to recover lost corners
after rejection and obtain higher accuracy. Our detection pipeline
is tightly coupled and attains decent results against various noise
in experiments. Fig. 1.

The second issue is about lens distortion, which is a non-trivial
problem in camera calibration, especially radial distortion [18].
Classical methods [7], [19], [20] estimate camera and distortion
parameters simultaneously by iterative optimization based on
detection results. However, ambiguity is introduced in this way
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Fig. 1. Examples of detection outliers and detection results. The real image
(up) and its native heatmap are related to lost corners and the synthetic ones
(bottom) are fake corners. Both of them can be rejected according to abnormal
distribution and achieve accurate detection after our post-processing.

as parameters are tangled together leading to failure under severe
distortion. Moreover, this paradigm relies on detection accuracy,
but distortion is detrimental to detection. On the other hand,
the distortion is related to the curvature of the straight lines.
This feature can be learned by deep network and utilized to
correct distortion according to some fisheye image correction
work [21]-[23]. As chessboard images naturally own many
straight lines, we apply a compact network to infer the correction
parameters from distorted images with a practical distortion
model. As the detection suffers from radial distortion and our
collineation post-processing assumes no distortion, so the dis-
tortion correction is performed first in our framework.

The third issue is caused by purely algebraic optimization
aimed at re-projection error minimization, which may lead to
unreasonable calibration results. The re-projection error is the
residual between the 2D detection results and 3D projections
through camera model. When the detection is accurate, the re-
projection error minimization can obtain accurate camera model.
However, the detection results always contain noise. Thus, the
re-projection error may not directly relate to the accuracy of
camera model. Based on our synthetic dataset, we conduct ex-
periments to explore the relationship between re-projection error
and camera model accuracy under noisy detection (Sec. IV-C).
We find that the small re-projection error may not ensure the high
accuracy of calibration, but the re-projection error consistency of
all images can give a cue of precise camera model. Therefore, we
propose an efficient image-level RANSAC algorithm based on
re-projection error consistency to search for the optimal camera
model and can improve the robustness of parameter estimation.

In sum, the critical components of a calibration system, dis-
tortion correction, feature detection and parameter estimation,
are reforged and integrated as a novel and efficient calibration
framework (Fig. 2). The contributions can be summarized as
follows.

1) A novel learning-based camera calibration framework is

proposed including radial distortion correction, sub-pixel
feature detection and stable parameter estimation.
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2) Our proposed feature detection method well combines
the robustness of learning method with the precision of
specially designed refinement and post-processing.

3) Massive experiment results manifest the high precision
and robustness of our framework compared with state-of-
art methods.

II. RELATED WORK

Chessboard Corner Detection: Firstly, corner detectors such
as [8], [9], [24] are adopted, but they are sensitive to noise.
The widely-used detection function in OpenCV [5] refines co-
ordinates according to gray distribution constraints. In [10],
corner coordinates are refined based on the chessboard struc-
ture. While these methods achieve sub-pixel precision, heavily
relying on hand-crafted features leads to the lack of robustness.
Recently, some detection algorithms based on learning features
are proposed [11]-[13]. In this methods, CNNs are trained on
synthetic chessboard images to output the location of chessboard
corners in image. Learning feature representation makes their
methods robust against noise, but they are trapped in pixel
level accuracy. Schroter et al. [15] propose a learning-based
general point detection method. This method achieves sub-pixel
accuracy, yet provides false negative results owning to global
detection. Kang et al. [14] tackle this problem by parsing global
context, but its method provide inaccurate results under difficult
scenes as the sparse detection is achieved by non-maximum
suppression. Chen et al. [17] propose a more accurate method
by fitting CNN'’s response map. This pipeline is close to ours,
but our learning heatmap method gets more tight connection
between detection and refinement. Besides, we avoid unreliable
detection results in [ 15] through the distribution-aware outlier re-
jection. Specific techniques named collineation post-processing
considering the peculiarity of chessboard pattern are proposed
to achieve higher precision.

Radial Distortion Correction: Classical algorithms integrate
distortion in camera model and solve it by non-linear opti-
mization techniques [7], [19], [20] using the detection results.
Although this method works well under slight radial distortion,
they may end up with a bad solution when the distortion is severe
because of the inaccurate detection and parameter tangle. On the
other hand, straight lines wrapped by distortion are appropriate
features for CNNGs to learn distortion parameters which is proved
in some related fisheye image distortion correction work [21],
[22], [25]. As chessboard images contain sufficient straight line
features, we adopt a compact CNN to regress parameters of a
specially selected distortion correction model. Different with
previous work [25] with similar compact network, we adopt
a more flexible distortion model which can choose suitable
number of parameters based on different distortion levels.

Parameter Estimation: Widely-used Zhang’s technique [7]
first solves the initial guess of parameters based on the cor-
respondence between the real world and image. Then these
parameters are refined by minimizing the re-projection er-
ror. However, re-projection minimization can not ensure an
accurate camera model as detection always contains noise.
Besides, purely algebraic optimization is unstable leading to
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Fig. 2.

Our framework includes three main parts. First, radial distortion is removed by correction model inferred from distorted images by our network (green

part). The chessboard corner detection part consists of heatmap learning and sub-pixel refinement with outlier rejection and collineation post-processing (blue part).
After precise sub-pixel corner coordinates are obtained, stable parameter estimation through a simplified RANSAC procedure is performed to achieve accurate

camera parameters (gray part).

suboptimal calibration results. RANdom SAmple Consensus
(RANSAC) [26] algorithm has been introduced into calibration
to enhance the estimation stability. Y Lv et al. [27] propose a
RANSAC-based method to evaluate camera intrinsic parameters
and eliminate unreliable chessboard images depending on the
distance between the circular point and the image of absolute
conic. RANSAC-based algorithm is also adopted in [28] to
exclude the detected feature points with overlarge noise. We
also adopt a simplified RANSAC-based procedure to improve
the robustness of parameter estimation. Different from previous
work, as outlier rejection already gets involved in detection, we
propose an efficient image-level RANSAC algorithm. Based on
our experimental findings, this algorithm is aimed at searching
for the camera model with both small overall error and best error
consistency.

III. THE PROPOSED CALIBRATION FRAMEWORK

In this section, we introduce the proposed camera calibration
framework. The camera calibration task which we focus on is to
estimate camera parameters (K, the intrinsic matrix includes
focal length and principle points.) from a set of chessboard
images (N images) ({1, } ) which may contain distortion.
It can be formulated as:

K =P ({Lhu} i) (1)

where P is the calibration procedure. Based on the three chal-
lenges in calibration (Sec. I), we divide this task into three
sub-tasks and propose our solutions for each of them.

A. Radial Distortion Correction

As simultaneous parameter estimation and distortion correc-
tion not only increase calibration effort but also reduce precision,
our framework performs distortion correction first. Considering
that chessboard images contain sufficient straight line features
which are helpful for CNN to learn the distortion [21], [23],
we adopt a CNN-based, 8 layers encoder with 3 regression
layers to regress correction model parameters from images.

Besides, we apply a more practical distortion model than previ-
ous work: the radial model (74 = r.(ko + k172 + ...)), which
is symmetric and flexible [18]. Its symmetric property main-
tains consistency between the distortion and correction. Thus
we can generate distorted images (/4;s¢) to train this network,
which outputs parameters of another radial model with higher
order (r. = rq(ky + kjra + khr2 + ...)) for correction. This
model’s flexibility allows us to choose appropriate number of
output parameters according to the specific distortion:

{k/}l -0 — (Idzstv 6.7-') (2)

where M is the correction parameter number and F is our
network with parameter © r. Then, distortion is corrected:

Ieorr =C (Idisty {k;}ﬁo) 3)

where C is the correction function utilizing bilinear interpolation.
In practice, to train the network, we generate massive distorted
chessboard image by randomly sampling up to three parameters
in distortion model. Some image examples can be seen in Fig. 5.
As the distortion model and correction model have different
parameters, only robust sampling grid loss is adopted [23]:
Lyria = ~ SN |Ipiy.; — Dlor|1, where pyg; represent the loca-
tion of distorted grid points and p..,,- represent the corrected ones.

B. Chessboard Corner Detection

We propose heatmap learning detection with specially de-
signed refinement and post-processing to obtain sub-pixel chess-
board corner.

Heatmap learning detection: The ground truth heatmap (Y")
is designed to represent each corner as a 2-dimensional Gaus-
sian distribution (G) centered at the labelled sub-pixel coordi-
nate. Then we use these heatmaps as supervision to train the
classical UNet [29] (U/) with the L2 detection 10ss: Lgetect =
S g 1Y (z,y) — Y (z,y)||2dzdy. Therefore, the image is trans-
formed to a heatmap:

Y u( corrs @D) (4)

where Op is the network parameters.
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Sub-pixel refinement with outlier rejection: The Non-
Maximum-Suppression (NMS) is first applied on heatmap to
obtain distributions:

{G:}i_o = NMS(Y) )

where J is the chessboard corner number. Then, for each distri-
bution, we find the center p and the variance o2 by Gaussian
surface fitting algorithm:

{n,0%} = arg miy |9 (n.0?) — 4|

(6)

which can be solved using points (p;) around the distribution
peak:

C(wimpa)? (wi-ny)?
2

20% 2ay (7)

pi =Y (x,y) =e

Then we have:

pixInp; = [pi piwi pivi pix? piy?)
[_ui My ope My 1 _L}T
202 202 o2 o2 202 202
which can be expressed as:
a; = b; - C;’F ®)

For N points, we can stack formulations as:
A=BCT 9)

Then we can solve the matrix C'” which contains g and o2 by the
SVD decomposition. The g = (p, ) represents the corner’s
sub-pixel coordinate. As our network is trained to generate stan-
dard Gaussian distribution, abnormal distribution corresponds
to unreliable detection. The distribution aware outlier rejection
(OR)is to eliminate wrong detections according to o2 compared
with the variance of training data:

||o'2 — afmmHl > threshold (10)

if the (10) is statisfied, the distribution G will be treated as outlier:

{“g}f:o = OR ({ps, 0} %]:0) (11)

where L is the inlier number and L < J.

Collineation post-processing After inliers are selected,
collineation post-processing (C'P) is proposed not only to refine
the sub-pixel coordinates but also to recover some lost corners.
However, before collineation post-processing, we need to sort
unordered corners after outlier rejection. Therefore we can get
sets of corners belong to each line. We sort corners based on
OpenCV [5] and [30]. After corners are sorted, we take sets of
corners to fit lines. Due to the distortion being removed firstly
by our framework, the final corner coordinates are calculated by
intersecting these lines (Fig. 3):

~
U={piti_y=CP ({H; iL:O)
where U is the final sub-pixel corners set of a image.

In sum, the proposed corner detection method can be de-
scribed as:

(12)

U= D(Icorr>@D) (13)

where D is the overall detection method.
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Fig. 3. The proposed collineation post-processing which can recover lost
corners due to outlier rejection and refine inaccurate corners based on the
chessboard corner collineation after distortion correction.

C. Parameter Estimation

Traditional calibration objective function (re-projection error
minimization) assumes the 2D detection is accurate, which
conflicts with the reality that detection always contains noise.
Thus the re-projection error minimization under noisy detection
is to search a camera model which minimizes most of points’
re-projection error. As the detection noise pattern is unknown,
the camera model may not be accurate although the re-projection
error is small. Hence, we explore the relationship between
calibration precision and re-projection error (Sec. IV-C). Ex-
periment results indicate that small re-projection errors may
not guarantee accurate camera models. However, the camera
model’s re-projection error distribution in all images can help
us to distinguish accurate camera models with small and sim-
ilar re-projection errors. As images in the same calibration set
often contains similar noise (they are taken in the same scene),
accurate camera model exhibits small and close re-projection
errors in these images. Based on this experimental finding,
we propose an effective parameter estimation method which
improves Zhang’s technique [7] by the simplified RANSAC
procedure. This method can be described as follows:

1) Choose some of the images randomly to estimate param-

eters based on Zhang’s technique.

2) Calculate the re-projection errors of all images and deter-
mine the inliers whose re-projection errors are less than
the threshold.

3) Output the parameters if the inliers number exceeds
threshold or iteration times are big enough (output the
best model who has the most inliers); otherwise repeat the
above steps.

With appropriate threshold, we can obtain accurate camera
model with both small overall re-projection error and best
consistency of all images’ re-projection errors through this
RANSAC-based estimation. Experiment results prove its effec-
tiveness as well. The parameter estimation procedure (£) can be
expressed as:

K=¢& ({Ui}gvzo) (14)

The accurate camera model (K') can be achieved under the input
of corner sets.
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Fig. 4. Calibration experiment with noisy detection to show the relationship
between re-projection error and calibration accuracy. (a) The regress plot of
intrinsic parameter error (Erp) and RMS re-projection error (RPE) in 2 K
calibration trails. (b) Figure (a) is zoomed in on the red rectangular area where
RPE can not represent calibration precision. (c) The box-plot of single image
re-projection error (SI-RPE) distribution in calibration image set of an accurate
camera model. (d) Another SI-RPE distribution box-plot of an inaccurate camera
model with similar RPE as the accurate model.

D. Framework Integration

In sum, the three sub-module described above is integrated
into a novel calibration framework (Fig. 2):

K =& ({D(C (i F (i 07)) . 00) },) - (19)
which takes a set of chessboard images as input and outputs
accurate and stable camera parameters.

IV. EXPERIMENTAL RESULTS

The performance of our camera calibration framework is
evaluated on both synthetic and real data. We also construct
experiments to demonstrate the accuracy of our feature detection
part.

A. Dataset and Metric

To train our networks, we generate massive chessboard im-
ages (image size: 480 x 480, chessboard size: 5 X 6 ~ 12 x 9)
with ground truth corner heatmaps and camera parameters (focal
length: 100 < f,, fy < 300 in pixel, principal points: 120 <
Dz, Py < 360 in pixel and random extrinsic parameters). More-
over, noise, bad lighting, distortion and fake background using
TUM dataset [31] are applied as data augmentation. Specifically,
the image distortion level is decided by parameters kg, k1 and
ko. The example synthetic images can be seen in Fig. 5 (left).
We use the metrics related to focal length (FL) and principal
points (PP) in intrinsic matrix which can be defined as:

Epp =||FLer — FL|, (16)

Epp = |PPar — PP||; (17)
1

Erp = §(EFL + Epp) (18)

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 4, OCTOBER 2022

original background
3 >

Real Image

N

distorted  bad lighting

Fig.5. Left: Examples of synthetic images. Right: Examples of images under
different degrees of distortion(kp = 1,—0.5 < k1 < —0.2, k2 = —0.02) and
real distorted image (top) along with the corrected images (bottom) acquired by
our method.

The RMS re-projection error (RPE) is used too.

RPE = [Ri|t;] Pyl (19)

ﬁ Z Z Ipij — s: K

where p;; are the 2D points and P;; are corresponding 3D points.
M is the number of chessboard corners. N is the number of
images.

B. Implementation Details

Training Settings: a) The distortion correction model is
trained with 40 K distorted images sized 480 x 480 and batched
4. The Adam [32] optimizer is used. The base learning rate is
set as 0.01 with weight decay of 1e~® and 200 epochs are used.
b) The corner detection model is trained with 60 K, 480 x 480
chessboard images. Optimization is performed by Adam as well
with batch size set as 4 and 800 epochs are used. The base
learning rate is set as 0.001 with weight decay of 1e~®

Parameter Estimation Settings: The outlier RPE threshold is
setas 0.06 ~ 0.08 in our experiments. The inlier image number
threshold can be set as 4 3 x N, where N is the image number of
calibration set.

C. Calibration Accuracy Exploration

Traditional calibration objective function, the re-projection
error minimization, may not directly reflect the calibration
precision under noisy detection. To explore the relationship
between calibration accuracy and re-projection error under noisy
detection, we conduct experiment with 2K calibration trails
with our detection results. Specifically, 5 sets of chessboard
images (40 images per calibration set with synthetic noise),
ground truth camera parameters and our detection results on
them are collected. Our detection is with corner error in 0 ~ 2
pixels because of the noise applied on images. Each trail we
randomly take 3 ~ 20 images from one of the image sets to
perform calibration based on Zhang’s method [7] and get the
RMS re-projection error (RPE, (19)). The intrinsic parameter
error (Erp, (18)) of each calibrated camera model is calcu-
lated as the true calibration accuracy. In order to better view
the re-projection error distribution in different images, we use
the calibrated camera model of each trail to calculate the single
image re-projection errors (SI-RPE) of all the images in the
calibration set. The experiment results are summarised as regress
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TABLE 1
COMPARISON OF CAMERA CALIBRATION WITH DIFFERENT IMAGES

Calibration Methods ‘ Noise | Bad Lighting | Distortion I | Distortion IT

Distortion Correction | Feature Detection | Parameter Estimation | E;p RPE | E;p RPE | Erp RPE | E;p RPE
Opt. Hand-crafted Std. 1.52 0.53 1.93 0.47 2.71 0.64 5.35 0.57

Opt. Learning Resp. [17] Std. 0.95 0.54 1.03 0.63 1.73 0.94 3.13 1.40
Learning [23] Learning Resp. [17] TAC-RAN. [27] 0.79 0.46 0.81 0.35 1.16 1.02 2.69 0.97
Ours Learning Detc. [14] TAC-RAN. [27] 0.85 0.38 0.92 0.41 0.81 0.64 1.55 0.73

Ours Learning Resp. [17] Ours 0.73 0.41 0.77 0.36 0.69 0.43 1.41 0.86
Learning [23] Ours Ours 0.68 0.23 0.74 0.39 0.67 0.65 2.57 0.76
Ours Ours Ours 0.68 0.23 0.74 0.39 0.60 0.55 1.12 0.53

plots of two calibration errors and box-plots of calibrated camera
model’s SI-RPE distribution in all images of the calibration set.
(Fig. 4) It can be seen that smaller RPE corresponds to more
accurate camera model in general (when the EFrp = 0 ~ 10,
Fig. 4(a)). However, when the E;p = 0 ~ 2, the RPE does
not reflect the calibration accuracy (Fig. 4(b)). It shows RPE
minimization can not yield stable and accurate result, but we
find that the distribution of SI-RPE can guide us to find more
accurate camera model. Even with the similar RPEs, more ac-
curate model exhibits better consistency of re-projection errors
in different images. (Examples can be seen in Fig. 4(c), (d))
This can be explained as images of the same set share the noise
pattern (correspond to images taken in the same scene in real
life), thus the accurate camera model tends to output small and
similar re-projection error in every image. This finding motivates
the proposed RANSAC-based calibration procedure, which can
screen out accurate camera model with both small overall RPE
and good consistency of SI-RPE.

D. Calibration Performance

To extensively evaluate our framework, we conduct calibra-
tion experiments on four different image configurations: noise,
bad lighting, distortion and real data. As our framework divides
calibration into three part, we collect state-of-art methods be-
long to these parts and organize them into different calibration
frameworks with different combinations.

1) The distortion correction part. For conventional solu-
tion, we choose the optimization-based method [7] (Opt.). The
learning-based effective state-of-art method [23] (Learning) is
taken for comparison as well.

2) The feature detection part includes a hand-crafted feature-
based method [5] (Hand-crafted) and two recent learning
feature-based methods [14], [17] (Learning Resp. and Learn-
ing Detc.).

3) The parameter estimation part. As our work is based on
Zhang’s method [7], we take standard Zhang’s method [5] (Std.)
and another image-level RANSAC method [27] (IAC-RAN.)
based on absolute conic is taken for comparison.

For better visualization, we summarize calibration results
of some representative combinations in Table. I. All of these
results are average results of 50 independent calibration trails on
different images (40 images per trail) and camera parameters.

Calibration under noise and bad lighting: The first experi-
ment is to demonstrate the robustness and accuracy of our frame-
work in terms of environmental noise like low sensor resolution

and uneven illumination. We apply 3 x 3 (on 20 calibration
trails), 5 x 5 (20 trails) and 7 x 7 (10 trails) Gaussian kernels
to blur images for noise simulation. The uneven brightness is
simulated by specular lighting model [33] with random size
and center on each calibration trail. The average results are
summarized in the ‘Noise’ and ’Bad Lighting’ columns of Table.
I. Notice that since the distortion is absent here, the last two
rows of Table. I show the same results. It can be seen that
the detection part matters in calibration and higher detection
precision (which can be seen in Table. III) corresponds to higher
calibration accuracy. Moreover, the RANSAC algorithms do
decrease the RPE and E;p. The IAC-RAN. method chooses
outliers based on initial guess of Zhang’s method which works
well under slight noise but the initial guess is unreliable under
difficult condition. Our RANSAC procedure excludes outliers
based on re-projection error which is stable against different
conditions. The related results (lower E;p using our PE part)
can be seen in the third and fifth rows of Table. I. In general,
our framework achieves best results among all the combinations
as our detection part is more accurate and both point-level and
image-level outliers are exclude in our framework.

Calibration under distortion: We also conduct calibration
experiments on distorted images, and we set two different distor-
tion levels by randomly setting 3 parameters. The first distortion
level’s parameters are: kg = 1,—0.2 < k; < —0.35,—-0.1 <
k3 < 0. The second distortion level is more severe, whose
parameters are: 0.8 < kg < 1.2,-0.35 < k; < —0.5,-0.3 <
ks < —0.1. In practice, our network outputs 5 parameters for
correction and the learning method [23] is trained by our syn-
thetic dataset. The average results are shown in the ‘Distortion I’
and ’Distortion II" columns of Table. I. Learning-based distor-
tion correction methods perform better than traditional methods
according to the results. Our method gets comparable results to
state-of-art method [23] under slight distortion (’Distortion I’
column). However, under severe distortion, our method outper-
forms others by a noteworthy margin as shown in the last two
rows of "Distortion II” column. This confirms that our framework
maintains high precision under different distortion levels. On the
other hand, our distortion correction method works well with
two learning-based detection methods which demonstrates the
correction capability of our method.

Calibration on real data: To evaluate the performance of
our system under realistic conditions, we perform calibration
on a HIKROBOT MV-CA016-10GM camera with resolution of
1440 x 1080 (resized to 480 x 480) by a 12 x 8 chessboard.
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TABLE II
COMPARISON OF CALIBRATION ON REAL DATA

Ours Type I Type 11
fz 780.26 784.56 781.37
fy 1042.61  1049.93  1046.82
D 745.43 755.46 742.13
Dy 538.24 536.47 535.66
RPE 0.37 0.56 0.44
STD 0.03 0.10 0.06

Box-plot of RPE on real data

0.8+
0.7+
0.6+
051
.. . XY

0.4- T
0.3+

Ours Typé | Typé 1

Fig. 6. The box-plot of calibration RPEs of 20 calibration trails on real data.

The width of box indicates the dispersion of the data. It can be seen that our
method get lower and more tight RPE distribution which prove the precision
and stability of our calibration framework.

These images exhibit slight distortion and uneven illumination.
We repeat 20 times of calibration with different combinations of
chessboard poses and get the average results of intrinsic param-
eters, RPE and the standard deviation(STD) of RPE. Two types
of calibration framework composed by state-of-art methods are
selected for comparison. The Type I framework includes hand-
crafted feature-based detection, traditional distortion correction
method and the standard estimation. We implement it based
on OpenCV [5]. The Type II framework contains Learning
Resp. detection, learning-based distortion correction [23] and
the IAC-RAN. estimation. Table. IT shows the results. We can
observe that the three frameworks produce similar results and
ours gets the lowest RPE and STD. For better visualization, we
draw the box-plot of three methods’ RPE (Fig. 6) in which we
can seen the stability of each method and our RPE values are
more stable than others.

E. Corner Detection Accuracy

As calibration benefits from precise chessboard corner coor-
dinates, the accuracy of our corner detection method is tested
on both synthetic and real data in this part. Compared with
both feature-based [5], [10] and learning-based [14], [17] corner
detection methods, we conduct experiments on synthetic images
with different configurations including noise (5 x 5 Gaussian
blur), bad lighting (random center and size) and distortion

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 4, OCTOBER 2022

reference

pru‘ecu?
-

Detection

Image

Heatmap

Fig. 7. The illustration of detection consistency under homography transfor-
mations. The random transformations are applied on original image first. Then
the detection results on these transformed images are projected on the original
image. The distance between the original detection (red cross) and detection
projection (blue cross) is taken as detection consistency (dotted yellow line).
This metric is used to evaluate the detection performance on real images.

(ko=1,k1=—0.4, ko =—0.1). As the corner detection on dis-
torted images is not suitable for our framework where distor-
tion correction is performed at first, we evaluate the detection
accuracy on corrected images through our correction method
(See Sec. I1I-A for details.). This evaluation can demonstrate the
detection robustness against noise brought by the interpolation
in image correction. Each configuration above contains 2 K
chessboard images.

In our experiments, detection performance is also evaluated
on real data. Due to the lack of ground truth coordinates in real
images, we evaluate the consistency of detection through known
homography transformation as the performance demonstration.
Specifically, we collect 69 real chessboard images. For each real
image, we apply 20 random homography transformations on it.
Then the corner detection are performed on these images. The
detection results on original image are taken as reference, while
the results of transformed ones are projected to original image
through the known homography. The distances between projec-
tions and reference are calculated as the detection consistency
which can be seen in Fig. 7.

Moreover, in order to demonstrate that the post-processing is
helpful for detection, our detection pipeline with post-processing
discarded (Ours w/o OR & PP) are evaluated. As the lost
corners recovery is rely on the post-processing, the outlier
rejection part is turned off as well. The results are shown in
Table. I11. It can be seen that our approach results in comparable
precision under noise and more accurate detection under bad
lighting and distortion rectification. These results are consistent
with the calibration experiments and proves the precision of
our method. The better detection consistency on real data also
proves our method’s better performance. On the other hand, the
proposed outlier rejection and post-processing are in particular
advantageous in order to detect under difficult situation, which
can deliver up to 34% accuracy improvement.
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TABLE III
CORNER DETECTION ACCURACY UNDER DIFFERENT IMAGES

Corner Detection Accuracy (pixels)
Image Configuration

Methods Noise Bad Lighting  Correction! Real®
OpenCV [5] 2.23 243 2.94 1.27
libeb [10] 2.66 2.72 1.98 0.94
Kang et al. [14] 1.02 0.97 1.53 0.72
Chen et al. [17] 0.93 0.76 1.21 0.79
Ours w/o OR & PP 1.08 0.73 1.17 0.63
Ours w/ OR & PP 0.96 0.51 0.89 0.41

1 The distorted images are corrected by our method.
2The accuracy is quantified by detection consistency under known homography
transformation. See Sec. IV-E for details.

V. CONCLUSION

In this paper, the accuracy and robustness of camera cali-
bration are improved from three aspects: distortion correction,
corner detection and parameter estimation. Specifically, the dis-
tortion correction is performed by the learning-based method.
Accurate feature locations are achieved by the combination
of learning-based detection, specially designed refinement and
complete post-processing. Moreover, we obtain stable parameter
estimation by a RANSAC procedure. Finally, these proposed
methods are integrated into a novel calibration framework. This
framework surpasses other state-of-art methods by a noteworthy
margin in terms of calibration precision on both synthetic and
real dataset. Extensive experiments prove the robustness of this
framework against noise, bad lighting and radial distortion as
well. Besides, our corner detection method is evaluated where
decent results manifest the accuracy and contribution of this part
to our framework.
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